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ABSTRACT 

This work considers how the ratio signal/noise and the introduction of a cut-off fre- 
quency affect the calculus of the thermogenesis. In particular, the validity of the experl- 
mental criterion us&l to calculate this frequency inside the deconvolutive calculus is 
studied. The deconvolutive efficiency of the universal transference function is also pre- 
sented comparatively. 

INTRODUCTION 

One of the approaches to the thermokinetic problem has been focussed on 
the transfer function (TF) of the calorimetric system calculated from experi- 
mental thermograms by means of the Fast Fourier Transform (FFT), laying 
aside, however, certain qualitative evaluations such as the effects introduced 
by the existence of noise in the experimental records or the techniques used 
to smooth the thermograms [l-5]. On the other hand, a universal transfer- 
ence function (UTF) vs. a reduced frequency scale has been recently pro- 
posed as a general representation for conduction calorimeters at low frequen- 
cies [ 6,7 ] . Consequently, this work presents the upper limits upon the tins- 
fer function introduced by the existence of experimental noise, an analysis 
of this cut-off frequency using the whole spectrum of the calorimeter, 2nd 
the applicability of the UTF in the range of low frequencies. 

EXPERIMENTAL NOISE 

The existence of experimental noise (Johnson noise, electromagnetic per- 
turbations, effects associated with the digital read-out system, etc.) forces us 
to introduce an upper limit to the spectrum of the calorimeter: v,. Should 
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we accept higher frequencies in the deconvolutive calculus, we would obtain 
a resultant thermogenesis considerably affected by noise. The experimental 
procedure led to the introduction ad hoc of vn in the TF given by [S] 

ITFIV=Vn ~ Amplitude of noise .\ . 

ITFI,=, Maximum of the thermogram 

The quantitative validity of the criterion has been testeci up to now in two 
experimental systems: a BMR calorimeter [9] whose cell content is a high 
conductivity material, and the JLM-El calorimeter [lo] - containing a poor 
conductor (silicone oil) in the laboratory cell - which is studied in this work 
(Fig. 1). This criterion is more restrictive than that used concerning linear 
systems: ITFI,,,, 2: Inoisel. 

The mathematical treatment has been based on an analytic representation 
of the experimental transfer function of the system consisting of a product 
of poles and zeros in the Fourier space. Provided that the calorimeter may be 
represented by a few exponential terms instead cf the whole infinite series - 
at least within the range of low/intermediate frequencies - when the dissipa- 
tion takes place in the symmetry axis, it is feasible to think in such an 
approximation although the second and other time constants appearing in 
the analytic expressions lack physical meaning [ 111. For an axial dissipation 
the analytic approximation to the TF reads 

7 * = -2.4 s 

71 = 183.5 s 

TF(w) = S 
(SW + 1) 

72 = 55.2 s 

r3 = 12.3 s 

~3 = 6.5 s 

rs = 2.5 s 

76 = 2.4 s 

d3 
5 

0 
rad 

Fig. 1. Experimental TF of the JLM-El calorimeter calculated by means of the FFT. B 
and B’ = an axial heat dissipation (measurement L88 ; ZJ~ za 0.07 Hz); A and A’ = a dk- 
sipation near the detectcr system (L75; v, a 0.35 Hz). 
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Fig. 2. Modulus in dB vs. frequency of: (A) mathematical model of the calorimeter; (B) 
experimental transfer function (m. : L82); (C) mathematical model plus a random noise 
whose noise/signal ratio is 5 x 10S6 ; (D) the same as (C) with noise/signal 2.5 X 10B5 
(corresponds to the experimental noise/signal ratio); (E) the same as (C) and (D) with 
noise/signaI 5 X 10S5. 

where S is the sensibility of the calorimeter in proper units (mV W-l in our 
case). 

Experimental noise has been simulated by a random routine in a Video 
Genie EG 3003 microcomputer. The amplitude of the noise thermogram is 
similar to the experimental noise (noise amplitude/maximum of the thermo- 
gram = 5 X 10B6, 2.5 X 10m5 = experimental noise, 5 X lo+). 

The transform of the noise thermogram is obtained by means of the FFT 
and then added to the analytic transfer function given above (Fig. 2). Jn this 
way, we not only succeed in reproducing the experimental transfer function 
but we are also able to know quantitatively the oscillation of the TF at v, : 

xl dB in all the amplitudes of the noise waveform studied. 

CUT-OFF FREQUENCY ZJ, 

When calculating the thermogenesis using the FFT, the transform of the 
thermogram F{s(t)) must be divided by the transfer function of the calori- 
meter TF. The thermogenesis is finally obtained by means of the inverse 
Fourier transform. Obviously the effects introduced by the existence of 
noise on the thermogram and the TF increase in an uncontrolled way with 
increasing frequencies, so the quotient between transforms yields arbitrarily 
large values for high frequencies which play a very important role in the inte- 
gration to regain the thermogenesis. 

Consequently one must define a cut-off frequency (a window) just to 
supress high frequencies together with a technique capable of smoothing the 



Fig. 3. Reconstructed thermogenesis using a cut-off frequency, V, = 256, Au = 0.125 Hz 
(the actual thermogenesis is shown in Fig. 4), for an axial dissipation (B). Smoothing the 
oscillation introduced in B by the cut-off frequency vc gives B’. A shows the recon- 
structed thermogenesis corresponding to a heat dissipation near the detector system. A’ is 
A smoothed_ 

deformation introduced by such a window (see below). This frequency is 
strongly dependent on the relative position of the sources and the detector 
system, decreasing with the separation between them. 

Figure 3 shows two calculated thermogenesis curves with u, = 256, 5v = 
0 -125 Hz (Fig. l), where V, > V, in the axial dissipation (the thermogenesis 
obtained is clearly affected by noise) and V, < V, in the coaxial dissipation, 
so giving quite an acceptable heat generation. The best performance is ob- 
tamed when V, 2: v~_ 

Nevertheless, the use of a finite frequency spectrum introduces a pertur- 
bation on the therrnogenesis which is on no account negligible and it is 
asymptotically a sinusoidal wave with decreasing amplitude for times far 
away from the generation of the signal. 

Let us consider two examples. 
(1) Rectangular pulse (used in calibration procedures) of width (t, - to) 

f(t) = cl to> t> t, 

f(f) = w to< t< tl 

The Fourier transform of this function is easily evaluated 

f(a) = r f(t) ewiwt df =g (e‘-‘W’I -_e -iwto ) 

-00 

Let us now introduce the finite inverse Fourier transform of f(w), con- 
sidering only that part of the spectrum between (-a,, 0,) 

WC 

fbJ$) =gr J f(a)eiwt dw 
-wc 
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which after some calculus reduces to 

- 

with x = wt, t’ = t - to, t” = t - tl. 

Finally, if we make use explicitly of the series expansion of Si(Z) [12] we 
can rewrite f,.(t) as 

P’W - 

f,=(t) = f(t) -5 J 
t’w, 

= y dx 

w = f(t) - ; F ((;lT;;(;;):“;;, _ q ;;-l’::‘;$):“;;, 
. . 

Asymptotically fw,(t) behaves as 

f,,(t) = f(t) -9 {f(t’O,) COS(W,f’) + g&t’) sin(o,r’) 

- f(t”w,) cos(c.+t”) - g(w,t”) sin(C&“) ) 

where 

f(z) w + (1 - 2!/22 + 4!/24 - . ..) 

g(d - $ (1 - 3!/23 + 5!/25 - . ..) 

(2) Sometimes the experimental thermogenesis is given by a series of 

. 

exponential terms (first and higher order phenomena) 

f(f) = 0 t< 0 

f(t) = 5 q eBwit tzo (Of>O) 
i=l 

Similarly to the first example, we may calculate the finite inverse Fo*Mer 
transform of the spectrum of the signal 

f,=(t) = f(t) -$ *$I ai emwit Im[E, I-(wi + kd,) t)] 

where the function E,(z) is defined by 

w e-t 
El(z) = s 7 dt 

L 
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It admits the following series expansion [12] 

E,(z) =-y-lnz- 
-g (-1)" z” 

n=l nn! 

where y is Euler’s constant. 
Consequently 

f,,(t) = f(t) ++ g1 Cri eWwif @i - X + 2 
( 

Pr SiNWJi) 

n=l nn! I 

where 

%i 
= ait + iw,t = pi ei@i 

This expression can be well approximated when pi >> 1 by 

+$- sin(w,t- 3Qi) + . . . 
1 I 

showing an oscillatory behaviour when pi >> 1. This ripple can be elimi- 

nated by integration (smoothing) over a period: T = 2n/o,. 
Both examples lead to an extra oscillation on the thermogram of fre- 

quency vc, so justifying the smoothing technique which is usually applied on 
the thermogenesis obtained by finite deconvolution. Figure 3 (A --f A’, B + 
B’) shows precisely the action of this smoothing technique when applied on 
the thermogenesis mentioned above. Figure 3B is associated with a cut-off 
frequency vc > v,, whereas in Fig. 3A vc < vn, and a remarkably correct ther- 
mogenesis is obtained. 

DECONVOLUTION BY MEANS OF THE UTF 

The introduction of a universal transfer function, UTF, allows enlarge- 
ment of the range of frequencies attainable through a simple derivator with- 

Fig. 4. & Actual thermogenesis; B, the output thermogram; C, thermogenesis after the 
application of a onestep filter; D, deconvolution by means of the UTF. (- - - - - -1 bar- 
manic analysis. 
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out excessively increasing its complexity. Although the behaviour of the 
UTF is remarkably good within a range of frequencies which has been clearly 
established [ 71, it turns out to be necessary to evaluate its feasibility in a 
deconvolutive calculus applied directly on the temporal thermogram for, in 
this case, we make use of the whole spectrum of the thermogram. 

Figure 4 presents comparatively the efficiencies of several deconvolutive 
techniques: harmonic analysis, a simple derivator and the universal transfer 
function. The structure of the UTF in Fourier space (product of three 
poles) leads to a three-step derivator on the thermogram. The derivation pro- 
cedure follows the standard technique. The values of the poles are taken 
from ref. 7. 

CONCLUSIONS 

The criterion 

ITFL, 
“1 Amplitude of noise 

ITFl,=c Maximum of the thermogram 

gives a suitable value for the maximum frequency attainable in the decon- 
volutive calculus v,, which arises from the experimental noise in the thermo- 
gram and the transfer function. A deconvolution including frequencies 
higher than that upper limit vn proves to be inadequate. Obviously, during 
the deconvolutive calculus it is of fundamental importance to obtain a trans- 
fer function with a high signal/noise ratio with respect to that of the thermo- 
gram. 

The frequency vn, and consequently v, strongly depend on the relative 
position of the sources and the detector system, especially for very favour- 
able noise/signal ratios (10B3 or less). 

A finite inverse Fourier transform to yield the thermogenesis introduces a 
perturbation which is not at all negligible. This perturbation asymptotically 
reduces to a sinusoidal oscill&ion (whose frequency is precisely the maxi- 
mum frequency used in the integration) with decreasing amplitude and can 
be conveniently supressed by means of the usual integration technique over 
a period T = l/v,. This technique also allows smoothing of the influence of 
experimental noise when vc = v,. 

The universal transfer function exhibits deconvolutive characteristics 
clearly superior to a simple derivator without increasing the number of data 
required. Only information concerning the content of the laboratory cell 
needs to be added. 
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